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Hence, if we do not take the similarity transformation (a, = . . . = a, = I), into ac- 
count, by the use of known standard procedures we find the following invariants : 

ail = Inv, i = 1, 2, 3, 4 (3.2) 

01 [n3 (q * - a314) + 124 kJ * - a4lq)l - a)2 InI (4 * - aIs) + *? (q * - 

a,d)l = Inv 

(oh = w12 + wzzr. a2 = n3*32 _t n4aJ2, q * = mai1 + . . . + WQd 

Thus, for h = 1 and for one resonance relation (1.2), any analytic system of the fourth 
order can be reduced by a formal transformation to the form 

Xi = Si (hi + UiiU + Q(,U’) 

where aii are fixed, while aiz are related by the single condition (3.2). 
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We prove some theorems on the stability of motions of conservative mechanical 
systems under continually-acting perturbations, subject to specified constraints. 

In the investigation of stability of such type it is usually assumed only that the 
continually-acting perturbations are small [l]. Such a formulation omits from 
consideration an important class of conservative systems whose motions do not 
possess asymptotic stability because an integral invariant exists in them. HOW- 
ever, in many problems concerning the structure of the continually-acting per- 
turbations, certain information is available enabling us to estimate their influence 



Stability of motions of conser<atlve mechanical systems 215 

on the stability of motion of a conservative mechanical system [ 2 - 41. This 
question has been discussed in detail in [5 - 81, 

1, We are given the system of differential equations 

dx,ldt = X, (t, xl, . . . , 2,) s=l,..., n 

which allows the particualr solution 

5, = 0 s=l,..., n 

Concerning the right-hand sides of Eqs. (1.1) we assume that in the region 

(1.1) 

(1.2) 

t a t,, 52 < II2 (1.3) 

they are continuous and allow the existence of a unique solution for specified initial 

conditions. Here, and everywhere in the following. x2 = 21z + . . . + x,2, Re = 

R,” + . . . + R,“. Together with Eqs. (1.1) we consider the system of equations 

dxJdt = X, (t, x1, . . ., 5,) + R, (6 51, . . ., xn), s= 1, . . . . ‘2 (1.4) 

where the functions R, characterize the continually-acting perturbations. These func- 

tions also are defined and continuous in region (1.3) and satisfy the condition that Eqs. 
(1.4) have a unique solution under given initial conditions. The following theorem is 

valid concerning the stability of the solution (1.2) of system (1.1) under continually- 
acting perturbations R, . 

Theorem 1. The solution (1.2) of system (1.1) is stable under continually-acting 
perturbations if there exist functions V (t, x1, . . ., z,) and V, (t, x1, . . ., z,) 
satisfying the following conditions in region (1.3) : 

1) v* is a positive-definite function allowing an infinitely small upper limit ; 
2) for every Ed > 0 there exists 6, (el) > 0 such that 

I v (6 Xl, * * a, &L) - v* (6 51, . * *7 5,) I < e, (1.5) 
as soon as R2 ( 6,’ ; 

3) for every E, > 0 there exists 6, (e,) > 0 such that 

(1.6) 

outside the sphere X2 < .Sz2 as soon as R” < 62’. 
Proof. Let E > 0 be specified. According to condition (1) the inequality 

v* (t, x1, . * ., z,) b W(x,, . . ., 4 (1.7) 

where w is a positive-definite function not depending explicitly on t , is valid in re- 

gion (1.3). By a we denote the greatest lower bound of function W on the sphere 
z2 = 19, Then by virtue of (1.7) 

V, (t, 51, . . ., 2,) 3>, a (t > to) (1.8) 

everywhere on this sphere. Let 0 < I< a. In the space of variables ~1, . . ., x,, 

we consider the moving surface 

V, (t, x1, . . ., 5,) = 1 (1.9) 

From (1.8) it follows that the inequality x2 < e2 is valid when t > to for all points 
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of this surface. But since the function v, allows an infinitely small upper limit, for 
any t > to the surface (1.9) lies between the spheres x2 = es and z? = as2, where 

0 ( ~2 ( E. Wi_” denote this region by Q and its closure by Q. Condition (3) is ful- 
filled in region Q . 

Let %is -^1 x<(t) (s == 1,. . .) n) be a solution of system (1.4), satisfying for t = f,, 
the condition 

7, (50) = *l‘ns (s = 1, . . .) 8). J.\,2 < &23 (1.10) 

We show that fur any t ‘k l) 

s”(f) <&” (1.11) 

if R” < 6”, where 6 > 0 is some number. We assume the contrary: the trajectory of 

the solution of system (1.4) with initial conditions (1.10) leaves the e-cphare z2 .< a”. 

Then a segment r of this trajectory exists starting on the &2-sphere and ending on the 
e-sphere. Let 8, and t, be the corresponding instants at which the solution trajectory 
intersects these spheres. Consequently, when t E It,, ts] the solution trajectory corre- 

sponding to the segment l? belongs wholly to region 0. Since the moving surface 
(1.9) belongs to region Q, we have 

v, ffl, Jr (Q, * . .t J-n (Q ) = 4 < 2 (1.12) 

v, ft.& x1 rt,), * . ., s,, (Q) = t:! >> a > I (1.13) 

Consider the behavior of the time function I7 (t. .I’~ (t). . . . , z,, (t)) for t c [t,, 

&I, where X, ft) (s = 1, . . ., nf is a solution of system (1.4) with initial conditions 

(1.10). Inequality (1.6) is valid in region q , therefore, V (t) sr (t), . . ., 5, (t)) is 
a non~ncreasing fiction of time on the interval 1 E_ [t,, t,] , On the other hand, if as 

el we take E~ = (I, - I,) / 2, then the condition (2) for t = t,, with due regard to 

(1.12), for V we have the upper bound 

v (&, Xl (Qt . . *, 2, (Q) < (11 -t- l,W 

whiie for t = t,, with due regard to (1,13), the lower bound 

(1.14) 

v f&t .Q (GA f ’ ‘7 2, fh)) > (I, -I- wz (1.15) 

Comparing (1.14) and (1.15) we establish that the time function I’ (t, I~ (t), . . ., 
LC, (t)) increases along the solution trajectory when t E [I,, &I. which contradicts 
condition (1.6). Thus, if the solution of system (1.4) satisfies condition (1.10) at t = 
t, I then the estimate (1.11) is valid for the whole time of the motion if R2 < 6s 77 
min f6r2, 6, s), i.e. solution (1.2) of system (1.1) is stable under such continually- 

acting perturbations. 
Note. In the theorem’s hypotheses, besides the usual requirement of smallness of 

the continually-acting perturbations we have the additional constraint reflected in in- 
equality (1.6). 

Corollary. If inequality (1.6) is fulfilled in the whole region (1.3) then the theo- 
rem remains also valid when the infinitely small upper limit is absent in the function 
V, (t, x1,. . - 7 x,>. 

2. we introduce certain definitions. Let system (1.1) have rhe h: integrals 

Vi (t, 51, . - ., 5,) = c;, ic;;f t ‘ . . . k (2.1) 
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where the Vi are single-valued differentiabIe functions ; moreover, Vi (t, 0, * . . , 
4-J) 52 0 for t > t , ,-,, and let system (1.4) have the m integrals 

Vj' (t, XI, . . .) Z,) = Cj', ] = I. . . I?L (2.2) 

with analogous properties. 
Definition 1. The continually-acting perturbations Z?, preserve the integrals 

v, (t, 51, * . -7 5,) = C, (1 < s < k) if for every e > U there exist 6 te) > 0 

and Vi ‘( t, q, . . _, 2,) (1 < j < m) such that in region (1.3) 

1 V, (t, 51, . . .3 XR) - Vj’ (t7 x17 * * ~7 zn) I < E 

as soon as R2 < 62. 
Definition 2. The integral Vs (l, x1, . . ., I,,) =-= c,$ (1 -<[ s < k) is stable 

relative to the contin~lly-acting perturbations if for every E > 0 there exist 6, (E, 

t,), 6, (e, to) > 0 such that as soon as ” 

R” < Ij12, 1 V, (to, x1 (to), . . ., I,, (to)) 1 -C 6, 

it follows that 1 Ti, (t, xl (t), . . . , 5, (1)) 1 < E. Here xi = xi (1) (i =.I, . . ,n) 
is a solution of system (1.4). 

It is obvious that if the continually-a~tiug perturbations preserve the integral Vs = es, 
then it is stable relative to such continually-acting perturbations. Let us assume that the 
first p < m integrals (2.1) are preserved. Then, if as the functions V and V* we take 

v = VI’? + . . . + V l, 2 and V, = ‘VIZ + . . . -f- V,,2 . then they satisfy all 
the conditions of the corollary to Theorem 1 and, consequently, the conditions for the 
sign-definiteness of the function v, are sufficient conditions for the stability of solu- 

tion (I. 2) of system (1.1) under continually-acting probations. Thus, in the case under 
consideration there appears the possibility of using p preserved integrals of system (1.1) 

to evaluate the stability of solution (1.2). 
Pozharitskii [9] has established that the conditions for the sign-definiteness of the func- 

tdfononit: ;W;;;on ,.(&F 1’1, 2 are necessary and sufficient for the existence of some sign- 
. . 

I> * - ‘f 1-,) of the known p integrals of system (1.1). Hence fol- 

lows, in particular, the assertion : if the Liapunov stability of solution (1.2) has been 
established by constructing a sign-definite function P (V,, . . . . Vk) (for example, by the 
Chetaev method [lo]), then this solution is stable under continually-acting perturbations 

preserving all k integrals. A similar assertion proved by Demin [8] for parametric per- 
turbations of specific type and under more stringent constraints on integrals (2.2). 

Example 1. The equations of motion of an absolutely rigid body around a fixed 
point allow a one-parameter family of stationary solutions, To this family of solutions 
correspond uniform rotations of the body around certain of its axes, matched with the 
vertical, with a fixed angular velocity. Sufficient stability conditions for such motions 
were established in [ll] by the Chetaev method [lo] of constructing a Liapunov function 
in the form of a bunch of integrals of the equations of perturbed motion 
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Let us investigate the stability of such uniform rotations under continually-acting per- 
turbations caused by the action of a small constant gyrostatic moment. Equations (121 

corresponding to Eqs. (f.4) allow integrals [2.3), (2.4), and the integral 

Comparing integrals (2.5) and (2.6) we conclude that the continually -acting perturba- 

tions of the type being considered preserve integral (2.5) in the sense of Definition 1 , 
i.e. for sufficiently small x2 I- hIz t h2 i- ha2 the difference 1 I.:, - b.,’ 1 also is small 
uniformly relative to ti, vi (i = I, 2, 3) in the region 

i-l 

Consequently, all the uniform relations whose stability was proved [ll] by constructing 

a Liapunov function from integrals (2.3) - (2,5), are stable also under the continually- 
acting perturbations caused by the small constant gyrostatic moment. 

3. Let us consider the ease when the first p integrals (2.1) are preserved and the 

next q ones are stable (p -!- Q < k) relative to continually-acting perturbations 

Rf (t = 1, . . ., n). 

Theorem 2. If the Liapunov stability of solution (I, 2) of system (1.1) has been 

proved by constructing a Liapunov function from the first p $- q integrals (2. l), p of 
which are preserved and q are stable relative to continually-acting perturbations, then 

this solution is stable under such continually-acting perturbations. 
Proof, Let e > 0 be specified. Since the Liapunov stability of sohrtion (1.2) of 

system (2,l) has been proved by constructing a Liapunov function from the first p -t 4 
integrals (2. I), by virtue of a theorem in [9] the function 

H-q 

is positive definite, i.e. a positive-definite W {x1, * . .) 5,) exists such that 

V(l, 51, - * ” *%) 2 w ($1 . . ., 3,) (3.2) 

We indicate L > 0 such that the surface 

I.,+? ~~1~ * I ., x,) = E (3*3) 

ties wholly inside the sphere x z J \z r s. Since V is a continuous function of the Vi (i = 

‘l , * - -7 p -+ q), by the theorem’s hypotheses it is an integral of system (1,1), stable 
relative to the continually-acting perturbations being considered. This signifies that for 

each 1 > 0 there exist 6 (I, to) > 0, 6, (2, t,) > 0 such that as soon as 

R2 < 612, fr PO, XI &A ” * ‘3 5, We +=I 6 l ( 3.4) 

then for all 5 > to 

V (t, z1 (t), - ” f* J-72 (N -=l E (39 51 

where XI = Xi (t) (i = 1, s * -7 n) is a solution of system (1.4). Thus, if the initial 
data satisfy the condition x2 (to) < q2, where x2 = 11’: is a sphere lying wholly inside rhe 
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surface V (to 2t, . . ., 5,) = 6, then when the first of conditions (3.4) is fulfilled , 
inequality (3.5) is fulfilled during the whole time of motion. But, with due regard to 

(3.2), this signifies that the solution of system (1.4) cannot leave the region bounded by 
surface (3.3) and, consequently, the inequality x2 (t) < e2’is fulfilled during the whole 

time of motion. Q. E. D. 

Example 2. Let us consider the problem of the permanent rotations of a heavy 

rigid body around a fixed point. For the Euier gyroscope it has been proved that the uni- 

form rotations around the major and minor principal axes of its inertia ellipsoid arestable. 
This fact can be established by constructing a Liapunov function from the energy and 
area1 integrals, geometric integral and from the constancy ofthe modulus of the angular 

momentum 
Ap2 _t_ Bq2 -1 Cr” = COnSt (3.6) 

Arnol’d [Z] has proved that integral (3.6) is stable in the sense of definition 2 under 

continually-acting perturbations preserving the Hamiltonian structure of the system (for 
example, parametric perturbations caused by small perturbations of the constructive para- 

meters). Consequently, the uniform rotations around the major and minor principal axes 
of the inertia ellipsoid of the Euler gyroscope are stable under such continually-acting 

perturbations by virtue of Theorem 21 This assertion agrees with the results in [ 21. 
For the Lagrange gyroscope the necessary and sufficient condition for the stability of 

the uniform rotations around its dynamic axis of symmetry is the Maievskii criterion 
which can be established by constructing a Liapunov function from the energy and area1 
integrals, geometric integral and from the Lagrange integral r = const. In [13] it was 

proved that the integral r = const is stable under continually-acting perturbations of 
the type described above (zO # 0). Thus, by virtue of Theorem 2 Maievskii’s criterion 
is the stability criterion for such uniform rotations under continually-acting perturbations 

preserving the Hamiltonian structure of the system, i.e. it is universal in a specific 

sense. 
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We investigate the stability of systems as a function of the structure of the for- 
ces which may be dissipative, accelerating, gyroscopic, potential and nonconser- 

vative [ 11. 

1. Consider the systems 
z” f Dx’ + Ps = 0 (1.1) 

5” + nx. -I- Px = x (x, x’) 0.2) 
Here and below z is a column matrix with elements x1, . . ., x,; 19 = L)‘, P = -_- 
p’ + 0 are constant ( n X n)-matrices ; X (CC, x’) is a column-matrix with elements 

xi (z, z’), . . ., x n (5, x’) containing Xi, Xi’ in powers not lower than the second, 
where X (0, 0) E 0. The terms Dx’ characterize the dissipative and accelerating 

forces, the terms Px characterize the nonconservative forces, and the terms X (x, x’) 

characterize the nonlinear forces. We follow everywhere the terminology adopted in fl]. 
About systems (1.1) and (1.2) we know: 

1) system (1.1) is not asymptotically stable [Z] ; 
2) systems (1,l) and (1.2) are unstable if 0 s 0 Cl, 3] ; 
3) systems (1.1) and (1.2) are unstable if Sp D < 0 121 ; 
4) system (1.1) is unstable if D is sign-positive and the determinant ( f~ 1 # 0 

c31. 
In [S] it was asserted that system (1.1) is unstable for an even n and a sign-positive 

D. However, the proof carried out in [ 31 is valid only if 1 P 1 # 0 and, moreover, it is 
valid in this case for an arbitrary constant matrix U. 

We consider the characteristic equation (E is the unit matrix) 


